skip to main content


Search for: All records

Creators/Authors contains: "van Woesik, Robert"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Coral reefs support the world’s most diverse marine ecosystem and provide invaluable goods and services for millions of people worldwide. They are however experiencing frequent and intensive marine heatwaves that are causing coral bleaching and mortality. Coarse-grained climate models predict that few coral reefs will survive the 3 °C sea-surface temperature rise in the coming century. Yet, field studies show localized pockets of coral survival and recovery even under high-temperature conditions. Quantifying recovery from marine heatwaves is central to making accurate predictions of coral-reef trajectories into the near future. Here we introduce the world’s most comprehensive database on coral recovery following marine heatwaves and other disturbances, called Heatwaves and Coral-Recovery Database (HeatCRD) encompassing 29,205 data records spanning 44 years from 12,266 sites, 83 countries, and 160 data sources. These data provide essential information to coral-reef scientists and managers to best guide coral-reef conservation efforts at both local and regional scales.

     
    more » « less
  2. Abstract

    Corals are being increasingly subjected to marine heatwaves. Theory suggests that increasing the intensity of disturbances reduces recovery rates, which inspired us to examine the recovery rates of coral cover following marine heatwaves, cyclones, and other disturbances at 1921 study sites, in 58 countries and three oceans, from 1977 to 2020. In the Atlantic Ocean, coral cover has decreased fourfold since the 1970s, and recovery rates following disturbances have been relatively slow, except in the Antilles. By contrast, reefs in the Pacific and Indian Oceans have maintained coral cover and recovery rates over time. There were positive relationships between rates of coral recovery and prior cyclone and heatwave frequency, and negative relationships between rates of coral recovery and macroalgae cover and distance to shore. A recent increase in the variance in recovery rates in some ecoregions of the Pacific and Indian Oceans suggests that some reefs in those ecoregions may be approaching a phase shift. While marine heatwaves are increasing in intensity and frequency, our results suggest that regional and local conditions influence coral recovery rates, and therefore, effective local management efforts can help reefs recover from disturbances.

     
    more » « less
  3. Free, publicly-accessible full text available May 1, 2024
  4. Abstract

    Coral reefs are the world’s most diverse marine ecosystems that provide resources and services that benefit millions of people globally. Yet, coral reefs have recently experienced an increase in the frequency and intensity of thermal-stress events that are causing coral bleaching. Coral bleaching is a result of the breakdown of the symbiosis between corals and their symbiotic microalgae, causing the loss of pigments and symbionts, giving corals a pale, bleached appearance. Bleaching can be temporary or fatal for corals, depending on the species, the geographic location, historical conditions, and on local and regional influences. Indeed, marine heat waves are the greatest threat to corals worldwide. Here we compile a Global Coral-Bleaching Database (GCBD) that encompasses 34,846 coral bleaching records from 14,405 sites in 93 countries, from 1980–2020. The GCBD provides vital information on the presence or absence of coral bleaching along with site exposure, distance to land, mean turbidity, cyclone frequency, and a suite of sea-surface temperature metrics at the times of survey.

     
    more » « less
  5. Guest, James R. (Ed.)
    Coral reefs protect islands, coastal areas, and their inhabitants from storm waves and provide essential goods and services to millions of people worldwide. Yet contemporary rates of ocean warming and local disturbances are jeopardizing the reef-building capacity of coral reefs to keep up with rapid rates of sea-level rise. This study compared the reef-building capacity of shallow-water habitats at 142 sites across a potential thermal-stress gradient in the tropical Pacific Ocean. We sought to determine the extent to which habitat differences and environmental variables potentially affect rates of net carbonate production. In general, outer-exposed reefs and lagoonal-patch reefs had higher rates of net carbonate production than nearshore reefs. The study found that thermal anomalies, particularly the intensity of thermal-stress events, play a significant role in reducing net carbonate production—evident as a diminishing trend of net carbonate production from the western to the central tropical Pacific Ocean. The results also showed a latent spatial effect along the same gradient, not explained by thermal stress, suggesting that reefs in the western tropical Pacific Ocean are potentially enhanced by the proximity of reefs in the Coral Triangle—an effect that diminishes with increasing distance and isolation. 
    more » « less
  6. null (Ed.)
  7. Abstract

    Marine heatwaves can cause coral bleaching and reduce coral cover on reefs, yet few studies have identified “bright spots,” where corals have recently shown a capacity to survive such pressures. We analyzed 7714 worldwide surveys from 1997 to 2018 along with 14 environmental and temperature metrics in a hierarchical Bayesian model to identify conditions that contribute to present‐day coral cover. We also identified locations with significantly higher (i.e., “bright spots”) and lower coral cover (i.e., “dark spots”) than regionally expected. In addition, using 4‐km downscaled data of Representative Concentration Pathways (RCPs) 4.5 and 8.5, we projected coral cover on reefs for the years 2050 and 2100. Coral cover on modern reefs was positively associated with historically high maximum sea‐surface temperatures (SSTs), and negatively associated with high contemporary SSTs, tropical‐cyclone frequencies, and human‐population densities. By 2100, under RCP8.5, we projected relative decreases in coral cover of >40% on most reefs globally but projected less decline on reefs in Indonesia, Malaysia, the central Philippines, New Caledonia, Fiji, and French Polynesia, which should be focal localities for multinational networks of protected areas.

     
    more » « less
  8. Abstract

    Increases in the frequency and intensity of acute and chronic disturbances are causing declines of coral reefs world‐wide. Although quantifying the responses of corals to acute disturbances is well documented, detecting subtle responses of coral populations to chronic disturbances is less common, but can also result in altered population and community structures.

    We investigated the population dynamics of two key reef‐building Merulinid coral species,Dipsastraea favusandPlatygyra lamellina, with similar life‐history traits, in the Gulf of Eilat and Aqaba, Red Sea from 2015 to 2018, to assess potential differences in their population trajectories.

    Demographic processes, which included rates of survival, growth, reproduction and recruitment were used to parametrize integral projection models and estimate population growth rates and the likely population trajectories of both coral species.

    The survival and reproduction rates of bothD. favusandP. lamellinawere positively related to coral colony size, and elasticity analyses showed that large colonies most influenced population dynamics. Although both species have similar life‐history traits and growth morphologies and are generally regarded as ‘stress‐tolerant’, the populations showed contrasting trajectories—D. favusappears to be increasing whereasP. lamellinaappears to be decreasing.

    As many corals have long‐life expectancies, the process of local and regional decline might be subtle and slow. Ecological assessments based on total living coral coverage, morphological groups or functional traits might overlook subtle, species‐specific trends. However, demographic approaches capable of detecting subtle species‐specific population changes can augment ecological studies and provide valuable early warning signs of decline before major coral loss becomes evident.

     
    more » « less